
2024届衡水金卷先享题 [调研卷](六)6文数(JJ·B)答案正在持续更新,目前2026百师联盟答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。
本文从以下几个角度介绍。
-
1、2023-2024答案扫一扫
2、2023-2024答案解析网
3、2023-2024大案要案侦破纪实全集
4、2023-2024大安罗纳多电动三轮车
5、2023-2024答案网
6、2023-2024答案之书
7、2023-2024答案之书电子版
8、2023-2024答案之书在线测试
9、2023-2024大安国的帝姬by黛妃笔趣阁
10、2023-2024答案
9.C【解题思路】由题政6C的中点G,连接Dc,AC为x2+y2=2.∠ADG或其补角为异面直线AD与SB所成的角【解析】因为%芳,拟4a=2n+1不妨设0A=2DG=2,AG=√7,AD=2→元2-(n-l,当n≤2时,a1>a,当n≥3时,2n*1人10c=是结天2232942【解析】如图,取BC的中点G,连接DG,AG,则1数列增减性的判断方法G不妨设01=2,则DG=2SB=万,连接AC,在判断数列的增减性通常利用作差法,若an+1an>0,则数列{an}递增,若an+1-an<0,则数Rt△ACG中,易知AC=2,CG=√3,则AG=列{an}递减.√4+3=√7.在△SAC中,SA=SC=2V2,AC=2,11.C【解题思路】根据函数f(x)的图象过点则m∠1石琴.放布A40市,由余被(0,2√5)以及p的范围求出p,然后利用等腰定理可得AD2=4+2-2×2×√2cos∠SCA=4,故直角三角形的性质求得|AB1,再根据正弦函数的图象与性质求出f(x)的最小正周期,即可求AD=2,则在△ADG中,0s∠ADG=4+2-72×2×√2出ω,得到函数f(x)的解析式,最后根据正弦函-只,故异面直线AD与SB所成角的余弦值为数的单调性即可求得结果.【解析】由题意知函数f(x)的图象过点(0,(易错:注意异面直线所成角的取值范围为(0,223),所以4n0=25,im0-9,结合0<21)p<受,知p=号因为△PAB为等腰直角三角考场提醒>>解题关键形,且斜边AB上的高为2,所以IAB1=4.易知利用移法求解异面直线所成角的关键是将异y=4sinx的图象与直线y=2在[0,π]上的两面直线所成角转化为面三角形的内角去求解.个交点的横坐标之差为-石=-了×2m,66310.B【解题思路】通过作差判断{an}的增减性,确定点(1,1)在圆0上,即可得圆0的方程记f八x)的最小正周期为T,则写T=4,得T=12,抢分密卷(一)·文科数学一8名师解题」
